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Seasonal shedding of winter hair at the start of summer is well studied in wild and domesticated populations. However, the genetic in-
fluences on this trait and their interactions are poorly understood. We use data from 13,364 cattle with 36,899 repeated phenotypes to 
investigate the relationship between hair shedding and environmental variables, single nucleotide polymorphisms, and their interactions 
to understand quantitative differences in seasonal shedding. Using deregressed estimated breeding values from a repeated records 
model in a genome-wide association analysis (GWAA) and meta-analysis of year-specific GWAA gave remarkably similar results. 
These GWAA identified hundreds of variants associated with seasonal hair shedding. There were especially strong associations between 
chromosomes 5 and 23. Genotype-by-environment interaction GWAA identified 1,040 day length-by-genotype interaction associations 
and 17 apparent temperature-by-genotype interaction associations with hair shedding, highlighting the importance of day length on hair 
shedding. Accurate genomic predictions of hair shedding were created for the entire dataset, Angus, Hereford, Brangus, and multibreed 
datasets. Loci related to metabolism and light-sensing have a large influence on seasonal hair shedding. This is one of the largest genetic 
analyses of a phenological trait and provides insight into both agriculture production and basic science.
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Introduction
Most mammals replace their coat or molt either completely 
or incompletely at annual or bi-annual intervals as an adaptive 
response to seasonal and climatic variation (Beltran et al. 2018). 
In cattle, molting occurs annually in the late spring and early sum-
mer when thick winter coats are exchanged for shorter ones in 
preparation for warmer temperatures. Generally, the onset of sea-
sonal shedding is driven by hormone cascades initiated by the 
hypothalamus–pituitary–gonadal axis in response to environmen-
tal cues such as hours of sunlight per day (day length) and changes 
in temperature (Helm et al. 2013). Among ungulates and other 
mammals, the effects of temperature and day length interact to in-
duce seasonal molting (Gebbie et al. 1999; Zimova et al. 2014, 2018; 
Schmidt et al. 2017). This interaction has never been explicitly de-
monstrated in cattle, although Yeates (1955) showed that artificial 
manipulation of day length can be used to perturb the timing of 
hair coat shedding regardless of temperature, while Murray 
(1965) found a moderate effect of temperature on hair coat shed-
ding among cattle at similar latitudes.

The timing and completeness of molting are also influenced by 
variables intrinsic to the individual, including the plane of nutri-
tion, life stage, and social status (Cowan et al. 1972; Heydon et al. 
1995; Déry et al. 2019). In some species, inaccurate molt timing 
has a high fitness cost, and therefore phenotypic plasticity is lim-
ited (Zimova et al. 2014). In other species (including cattle), vari-
ation in molting has been documented within groups of 
contemporary individuals (Turner and Schleger 1960; Turner 
1964), suggesting genetic variation influences an animal's ability 
to respond to environmental cues. Despite the extensive body of 
research exploring its biological basis in wild populations, domes-
tic populations, and humans, very few studies have focused on 
the genetic basis of seasonal coat change (see Ferreira et al. 
2017, 2020) and to our knowledge only our group has associated 
genetic variants with phenotypic variation in seasonal hair shed-
ding (Durbin et al. 2020). Though the cost of a “mismatched” sea-
sonal phenotype may be lower in domestic species like cattle 
compared to many wild populations, they still have large impacts 
on productivity (St-Pierre et al. 2003; Baumgard et al. 2015). 
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Previous work has demonstrated the impact of poor early summer 
hair shedding upon economically relevant traits such as growth 
and milk production in cattle (Gray et al. 2011; Durbin et al. 
2020). Here, we explore the genetic, environmental, and inter-
action effects that influence early summer hair shedding. We 
use a multibreed, repeated records dataset of early summer hair 
shedding scores collected across a range of latitudes, environ-
mental conditions, and production systems to investigate how 
light, temperature, and metabolism interact with genomic loci 
to affect the timing of summer hair shedding in cattle.

Materials and methods
All analyses were reproducibly pipelined using Snakemake work-
flows (Köster and Rahmann 2018) and R (R Core Team 2020). 
Unless otherwise specified, the {tidyverse} (Wickham et al. 2019) 
suite of packages was used for data processing. The code is avail-
able at https://github.com/harlydurbin/mizzou_hairshed_public.

Phenotypes
Hair shedding scores were collected over 9 years by 77 beef cattle 
producers and university groups, with most scores collected be-
tween 2016 and 2019 (Supplementary Fig. 1a in Supplementary 
File 1). Hair shedding was classified on an integer 1–5 scale based 
on the systems developed by Gray et al. (2011) and Turner and 
Schleger (1960) as described in (Durbin et al. 2020), where a score 
of 5 indicated 100% winter coat remaining and a score of 1 indi-
cated 0% winter coat remaining. Participants were asked to hair 
shedding score cattle when they observed the greatest amount 
of variation in shedding between contemporary individuals. 
Most herds were hair shedding scored once per year between 
mid-April and mid-June, but some groups chose to score cattle 
multiple times across the span of several months. This resulted 
in between 1 and 8 scores per animal per year. Most cattle were 
scored in at least 2 separate years (8,839 or 66.11% of all indivi-
duals; Supplementary Fig. 1b in Supplementary File 1).

When an animal's date of birth was available, its “age class” 
was calculated based on the date that the score was recorded. 
When no date of birth was available, the producer-provided inte-
ger age was used. Unreported score dates were assumed to be May 
1 of the scoring year for the purposes of age class calculation. Age 
class was calculated as (n*365d)-90d to (n + 1)*365d-90d, where n is 
the age classification and d is days. This means that animals at 
least 9 months of age that had not yet reached their first birthday 
could still be classified as yearlings and so on. Age class calcula-
tions were based on the Beef Improvement Federation age-of-dam 
definitions (Cundiff et al. 2018) as in Durbin et al. (2020), and hair 
shedding scores recorded on animals fewer than 275 (i.e. 365– 
390) days of age were excluded. Animals with differing sexes re-
ported across multiple years were also excluded. Finally, hair 
shedding scores recorded on bulls and steers were excluded as 
they comprised <5% of the data, and work in other species sug-
gests the biological mechanisms underlying molting may be dif-
ferent between sexes (Déry et al. 2019). After filtering, 36,899 
phenotypes from 13,364 cattle were retained for analysis.

Genotypes and imputation
Genotypes from SNP arrays were available for 10,511 phenotyped 
individuals and an additional 1,049 relatives. These genotypes ori-
ginated from multiple commercial and research assays varying in 
density from 26,504 to 777,962 markers. Most animals were geno-
typed with the Bovine GeneSeek Genomic Profiler™ F250 (GGP- 
F250), a research assay enriched for low-frequency and putatively 

functional SNPs (Rowan et al. 2019). On an assay-by-assay basis, 
markers with >10% missing data and markers significantly deviat-
ing from Hardy-Weinberg equilibrium (P-value < 10−50) were set to 
missing. After marker-level filtration, samples with >10% missing 
data were removed. The remaining genotypes for all assays were 
merged by position, with discordant calls set to missing for indivi-
duals genotyped with more than 1 assay. The merged genotypes 
were then imputed to the union of the GGP-F250 and Illumina 
BovineHD assays using a multibreed reference panel and the two- 
step approach described in Rowan et al. (2019). Finally, SNPs with a 
minor allele frequency below 1% were removed, resulting in geno-
types at 747,009 markers for 11,560 individuals. All genotype qual-
ity control was conducted using PLINK (Purcell et al. 2007).

Generation of the pedigree and genomic 
relatedness matrices
Using records provided by various participating breed associa-
tions, a 3-generation pedigree was constructed for registered ani-
mals with at least 1 phenotype retained for analysis. This pedigree 
was then supplemented with parentage information provided by 
project participants for un-registered and commercial animals 
with a registered sire and/or dam. To increase pedigree connect-
edness, the American Angus Association registration number 
was used for cross-registered American Angus individuals, sires, 
and dams with records in more than 1 breed association. 
Parentage was validated for genotyped animals with at least one 
genotyped parent using the SeekParentF90 program (Hayes 
2011; Misztal et al. 2014). Based on imputation accuracy, the ex-
pected rate of genotyping error, and the distribution of 
Mendelian conflicts across all parent-progeny comparisons, par-
ents found to have >0.05% SNPs in Mendelian conflict with re-
ported progeny were set to missing in the pedigree. In total, 106 
sires and 130 dams were excluded for 236 individuals. The final 
3-generation pedigree consisted of 13,221 un-phenotyped rela-
tives in addition to the 13,364 phenotyped animals, with 6,733 un-
ique sires and 17,954 unique dams. In order to take advantage of 
information from both genotyped and un-genotyped individuals, 
this pedigree was blended with genomic data to create the “hy-
brid” relationship matrix inverse (H−1) (Aguilar et al. 2011). H−1 is 
calculated as:

A−1 + 0 0
0 G−1

w − A−1
22

 

where A−1 represents the inverse of the numerator relationship 
matrix, A22

−1 represents A−1 subset to genotyped individuals, and 
G−1 represents the inverse of the genomic relatedness matrix 
(GRM) calculated using the VanRaden method (VanRaden 2008). 
Genomic and pedigree-relatedness matrices were blended with 
a weight of 0.05. In all models including a random effect of direct 
genetics, this matrix was used to represent relationships between 
individuals unless specified otherwise.

Estimation of breeding values and genetic 
parameters
Full dataset
Genetic parameters and estimated breeding values (EBVs) of hair 
shedding were first estimated using records from all available an-
imals in the following repeated records animal model, implemen-
ted with AIREMLF90 (Misztal et al. 2014):

y = X1c + Z1u + Z2p + e 
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In this model, y represents a vector of hair-shedding score pheno-
types. Contemporary group effects are represented in the vector c, 
where X1 is a matrix relating the elements of c to y. Contemporary 
groups were defined by the combination of herd ID, year, calving 
season (spring or fall), age group, toxic fescue grazing status, 
and score group. Based on the results of a model with age-in-years 
fit as a categorical fixed effect, age groups were defined as (1) 1, (2) 
2–3, (3) 4–9, or (4) 10+ . Grazing of tall fescue grass (Lolium arundina-
ceum) infected with the endophytic fungus Epichloë coenophiala has 
been shown to affect hair coat shedding in beef cattle (Gray et al. 
2011; Durbin et al. 2020). Toxic fescue grazing status, or whether 
cattle grazed endophyte-infected fescue in spring of the recording 
year, was reported by participants as yes or no. A score group was 
used to account for differences in scoring dates within a herd and 
a year. In cases where an entire herd was not scored on the same 
day in a given year, records were assigned to a score group using a 
5-d sliding window that maximized group size. Records from con-
temporary groups with fewer than 5 records were discarded. 
Additional models with various effects fit separately from con-
temporary group or removed from the model were fit to test the 
effects of environment and management on hair shedding.

Breed-specific datasets
When performing single-step genomic best linear unbiased pre-
diction (ssGBLUP) in crossbred populations, including data from 
both purebred and crossbred animals yields the highest predic-
tion accuracy (accLR), assuming individuals have sufficiently simi-
lar genetic structure (Alvarenga et al. 2020). When individuals are 
not sufficiently similar, calculation of the GRM without account-
ing for differences in allele frequencies between populations can 
result in inflated estimates of inbreeding. In turn, this can cause 
inflated EBVs and associated reliabilities for some individuals. 
Further, animal models assume that all individuals in the pedi-
gree derive from the same founder individuals. Violation of this 
assumption (as in the case of multibreed and cross-bred evalua-
tions) can result in inflated estimates of the additive genetic vari-
ance (Dong et al. 1988). Thus, we chose to replicate analyses 
completed in the full dataset in 4 breed-specific subsets with 
sufficient sample size for independent genetic evaluation. 
Calculation of within-breed EBVs also allowed us to search for dif-
ferences in additive genetic variation between breeds. The first 
through third datasets contained records from cattle registered 
with the American Angus Association (St. Joseph, MO; http:// 
www.angus.org/), International Brangus Breeders Association 
(San Antonio, TX; https://gobrangus.com/), and American 
Hereford Association (Kansas City, MO; https://hereford.org/), 
respectively. The fourth dataset consisted of cattle registered with 
partner breed associations participating in the International 
Genetics Solutions (IGS) multibreed evaluation (Bozeman, MT; 
https://www.internationalgeneticsolutions.com/). Further descrip-
tions of these datasets can be found in Table 1. The 3-generation 

pedigree and genotypes for associated animals were extracted for 
each dataset and used to construct the hybrid relatedness matrices 
H−1 (see Generation of the pedigree and relatedness matrices section).

Evaluation of breeding values
Prediction models were evaluated in the full and breed-specific 
datasets using several metrics proposed by Legarra and Reverter 
(2018) and explored further by Macedo et al. (2020). First, breeding 
values were estimated in 10 separate iterations within each data-
set, excluding phenotypes from a randomly selected 25% of indi-
viduals. Within each iteration, “partial” EBVs (μp) were regressed 
on their corresponding “whole” EBVs (μw) from the model includ-
ing all animals. In the absence of dispersion, the resulting slope 
is expected to be 1. Next, we estimated bias (Δp) by subtracting 
the absolute value of μp from the absolute value of μw. Finally, pre-
diction accuracies were calculated as accLR =  

����������
cov(up , uw)
(1−Fv)σ2

u



, where 
cov(μp, μw) represents the covariance between partial and whole 
EBVs, Fv represents the average inbreeding coefficient among ani-
mals with phenotypes randomly excluded, and σ2

u represents the 
additive genetic variance of hair shedding score estimated using 
all individuals.

In order to evaluate the effect of explicitly accounting for breed 
structure on accLR and model fit, we tested a model including prin-
cipal components from a principal component analysis of all gen-
otyped animals as fixed effects. The goal of this analysis was to 
determine if downstream analyses should use results from the 
previous (“full”) model discussed above. Principal component ana-
lysis was conducted using all 11,560 individuals and 747,009 SNPs 
with EIGENSOFT smartPCA v.7.2.1 (Patterson et al. 2006).

y = X1c + pc1β1 + pc2β2 + Z1u + Z2p + e 

Only phenotypes from genotyped animals were included in this 
model. Otherwise, it was identical to the full model besides the in-
clusion of principal components 1 and 2 as covariates. This was 
compared to a model identical to the full model, except that 
only phenotypes from genotyped animals were included.

The effects of temperature and photoperiod
Latitude and longitude coordinates were determined for each 
herd location using producer-provided addresses and the R pack-
age {tidygeocoder} (Cambon 2021). Based on these coordinates, the 
daily apparent high temperature, the sunrise time, and the sunset 
time were retrieved for the 30 d before each hair-shedding scoring 
date at each unique geographic location using the {darksky} R 
package (Rudis 2017). The {darksky} package interfaces with the 
Apple Dark Sky API (Application Programming Interface) to query 
National Oceanic and Atmospheric Administration historical 
weather records. For each score date-geographic coordinate com-
bination, the resulting 30-d range of apparent high temperatures 
was then averaged. Apparent temperature can be thought of as a 

Table 1. Descriptions of the breed-specific datasets.

Dataset Description N genotyped 
animals

N total 
phenotypes

Angus Purebred Angus cattle registered in the American Angus Association and commercial Angus 
cattle enrolled in the Breed Improvement Record Program

3,286 8,674

Brangus Brangus and Ultrablack cattle registered in the International Brangus Breeders Association 883 1,829
Hereford Purebred Hereford cattle registered in the American Hereford Association 1,005 2,857
IGS Purebred and crossbred cattle registered in one or more of the breed associations 

participating in the IGS multibreed evaluation: American Simmental Association, Red 
Angus Association of America, American Shorthorn Association, American Gelbvieh 
Association

4,722 10,996
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proxy for heat stress, as it combines the effects of real tempera-
ture, relative humidity, and wind speed. Similarly, day lengths 
were calculated by subtracting the time of sunrise from the time 
of sunset, then averaged across the 30-d range to act as a proxy 
for light exposure before hair scoring. Next, we fit the following re-
peated records animal model using AIREMLF90 (Misztal et al. 2014).

y = X1s + X2f + X3a + X4r + tβ1 + lβ2 + Z1u + Z2p + e 

In this model, y is a vector of hair shedding score phenotypes; s, f, 
a, and r, represent vectors of calving season, toxic fescue grazing 
status, age group, and year effects with matrices X1, X2, X3, and 
X4 relating observations to effects; β1 represents the regression of 
y on mean apparent high temperature (t) and β2 represents the re-
gression of y on mean day length (l). The effect of farm or herd is 
confounded with the effect of latitude and by extension, both tem-
perature and day length. Therefore, no herd effect was included.

Three additional models were also tested that were nearly 
identical to the base model above except for their inclusion of 
the temperature or day length variables. In 2 reduced models, 
only mean apparent high temperature or only mean day length 
were fit. In one expanded model, both temperature and day length 
were included plus an interaction effect, which was calculated by 
centering the individual variables and then taking their product. 
All 3 of these models were compared to the base model using 
Akaike information criterion (AIC) and a likelihood ratio test.

Recommendations for genetic evaluations
In routine genetic prediction, additive and environmental variances 
are often partitioned by fitting a single contemporary group effect. 
For some traits, fitting an additional effect external to the contem-
porary group definition results in more accurate predictions despite 
the increased computational cost (i.e. the effect of age-of-dam fit for 
many maternally influenced traits (Cundiff et al. 2018)). For the pur-
poses of large-scale genetic evaluations, it is of interest to know if 
the inclusion of additional environmental information provides a 
better fit than a simpler model including only contemporary group 
effects. To test this, we compared the base model and 4 repeated re-
cords animal models similar to those explored in the previous sec-
tion. The first of these can be described as:

y = X1c + tβ1 + lβ2 + Z1u + Z2p + e 

In this model, y represents a vector of hair shedding score pheno-
types, and c represents contemporary groups defined in the same 
way as the model discussed in Estimation of breeding values and genetic 
parameters. Identical to the models fit in the previous section, β1 re-
presents the regression of y on mean apparent high temperature (t) 
and β2 represents the regression of y on mean day length (l). Two 
other models included only temperature or only day length along-
side the contemporary group effect. The final, expanded model in-
cluded an interaction between day length and temperature. In all 
models, records from contemporary groups smaller than 5 animals 
were removed.

Genome-wide association
Deregression of breeding values and single-SNP regression
EBVs are an appealing pseudo-phenotype for further association 
studies as they represent the estimated additive genetic merit of 
an individual with environmental variance removed and combine 
repeated records into a single value. However, failing to account 
for the heterogeneous variances between EBVs resulting from 

the influence of familial data and in the case of repeated records 
traits, differing numbers of phenotypes per individual, can result 
in decreased power and increased false positive rate (Ekine et al. 
2014). To take advantage of our repeated records, genome-wide 
association analyses (GWAA) were performed using deregressed 
breeding values (DEBVs).

First, reliabilities for EBVs were calculated as 1 − PEV
(1+F)σ2

a 
(Aguilar 

et al. 2020), where PEV represents the approximated prediction error 
variance and F represents the pedigree-based inbreeding coefficient 
for the animal of interest calculated using the R package {optiSel} 
(Wellmann 2019). Next, EBVs for genotyped animals were dereg-
ressed using the method proposed by Garrick et al. (2009), imple-
mented in the {DRP} R package (Lopes 2016). The resulting 11,560 
deregressed estimated breeding values (DEBVs) were used as 
pseudo-phenotypes in SNP1101 single-SNP regression (Sargolazei 
2014). DEBVs were weighted by (1/rel)-1, where rel is the DEBV's as-
sociated reliability with parent information removed as calculated 
using the Garrick et al. (2009) method. These weights were used to 
construct the R−1 matrix of the mixed-model equations. 
Covariance between records due to relatedness was accounted 
for with a GRM constructed using the VanRaden method 
(VanRaden 2008). Postanalysis, P-values for single-SNP associations 
were adjusted by the estimated inflation factor (1.40) using the gen-
omic control method (Devlin and Roeder 1999). After genomic con-
trol, P-values were converted to false discovery rate (FDR) adjusted 
q-values using the R package {qvalue} (Storey et al. 2017).

GWAA meta-analysis
Meta-analysis of summary statistics from multiple independent 
GWAA increases power and decreases FDR compared with single- 
study results. In addition to GWAA of DEBVs, we tested 
meta-analysis of year-specific GWAA.

First, we fit 4 separate mixed linear model association analyses 
in Genome-wide Complex Trait Analysis (GCTA-MLMA) software 
(Yang et al. 2011, 2014) using phenotypes recorded in each of the 
years between 2016 and 2019. Phenotypes were adjusted for envir-
onment and management using contemporary group designa-
tions as implemented in the Estimation of breeding values and 
genetic parameters section. In cases of animals with multiple phe-
notypes available within a given year, the phenotype recorded 
closest to May 1 was used. Records from contemporary groups 
with fewer than 5 records were excluded, resulting in 5,146, 
4,989, 6,896, and 5,292 phenotypes included in the analyses asso-
ciated with 2016, 2017, 2018, and 2019, respectively. Next, 
meta-analysis of the 4 year-by-year GWAA was performed using 
the first random effects (RE1) model implemented in METASOFT 
(Han and Eskin 2011). The RE1 method was used as it reported 
effect sizes and standard errors used in downstream analyses. 
The resulting meta-analysis P-values were adjusted by an 
inflation factor of 1.52 using the genomic control method 
(Devlin and Roeder 1999) and transformed into q-values (Storey 
et al. 2017).

Conditional and joint association analysis
Conditional and joint association analysis (COJO) is a stepwise 
model selection procedure used to identify independently asso-
ciated SNPs and previously undetected secondary associations. 
Thus, it can be used to refine genome-wide association signals. 
COJO uses summary statistics (P-values as well as SNP effect betas 
and their associated standard errors) derived directly from a sin-
gle GWAA or from meta-analysis of multiple GWAA. Betas and 
standard errors were not available from the analyses detailed in 
Deregression of breeding values and single-SNP regression, so we 
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performed COJO using P-values obtained in the GWAA meta-analysis 
section. Summary statistics from the METASOFT RE1 model were 
then used for COJO in GCTA (Yang et al. 2012) with linkage disequi-
librium (LD) calculated within animals with a phenotype included 
in at least one of the year-by-year GWAA.

Genotype-by-environment interaction GWAA
Main effects GWAA is used to identify variants statistically asso-
ciated with the phenotype of interest agnostic to the environment 
in which the phenotype was expressed, assuming appropriate 
model specification. By contrast, genotype-by-environment inter-
action (GxE) GWAA can be used to identify variants whose associ-
ation with the phenotype of interest is dependent upon the 
environment in which the phenotype was expressed. Using the 
environmental data gathered in The effects of temperature and photo-
period, we fit GWAA modeling the interaction of genetics and ei-
ther apparent high temperature or day length in Genome-wide 
Efficient Mixed Model Association (GEMMA) software (Zhou and 
Stephens 2012). Phenotypes were pre-adjusted by subtracting 
the contemporary group fixed effect estimate (in this analysis 
defined as farm, year, calving season, age group, and fescue sta-
tus) from the raw hair shedding score. As such, records were ex-
cluded from contemporary groups containing fewer than 5 
animals. One GWAA was fit per environmental variable (mean ap-
parent high temperature or mean day length) per year (2016–2019) 
and in cases of animals with multiple phenotypes per year, 1 
phenotype was randomly chosen to increase variation in environ-
mental data. Meta-analysis of the resulting summary statistics 
was then performed in METASOFT using the second RE2 model 
(Han and Eskin 2011). The λmean (1.10 for temperature and 1.40 
for day length) and λhetero (0.47 for temperature and 0.33 for day 
length) calculated in this first run of METASOFT were used to ad-
just RE2 P-values in a subsequent run. Finally, adjusted RE2 
P-values were transformed to q-values to correct for multiple test-
ing (Storey et al. 2017).

Annotation and enrichment
Gene set and QTL enrichment analyses were performed separate-
ly for (1) the results of the main effect GWAA using DEBVs, (2) the 
main effect GWAA meta-analysis, (3) COJO selected SNPs, and (4) 
the GxE interaction effect GWAA meta-analysis of mean day 
length.

First, genes within 50 kb of variants significant at FDR < 5% were 
identified using the {GALLO} package (Fonseca et al. 2020) and 
ARS-UCD1.2 bovine genome coordinates (Rosen et al. 2020). In 
the case of COJO selected SNPs with no genes within 50 kb 
(n = 13), the nearest gene regardless of distance was included in 
the COJO gene set. Next, gene set enrichment analysis was per-
formed for each gene set using the ‘gost’ function provided in the 
{gprofiler2} package (Kolberg and Raudvere 2020), which interfaces 
with the g:Profiler toolkit to query publicly available functional an-
notation databases. Considered data sources included gene ontol-
ogy terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (Kanehisa and Goto 2000), Reactome pathways (Jassal 
et al. 2020), Comprehensive Resource of Mammalian (CORUM) pro-
tein complexes (Giurgiu et al. 2019), and human disease pheno-
types from the Human Phenotype Ontology database (Köhler 
et al. 2021). Significance values for gene set enrichment results 
were corrected for multiple testing using the g:SCS algorithm, 
which is designed for hierarchically related, nonindependent tests.

We also performed QTL enrichment analysis using Animal 
QTLdb QTL annotations (Hu et al. 2019). The {GALLO} R package 
was used to identify QTL annotations within 50 kb of variants 

significant at FDR < 5% and to calculate enrichments. Significant 
enrichments were determined using a Benjamini-Hochberg ad-
justed P-value threshold of 0.05.

Results
Estimation of breeding values and genetic 
parameters
Hair shedding scores were collected for cattle from 10 different 
breed groups across the Southeast and Midwest United States 
(Fig. 1) in late spring and early summer (Supplementary Fig. 2 in 
Supplementary File 1).

Models with and without principal components included as 
covariates were fit to assess the effect of population structure 
on breeding values. In principal component analysis, eigenvector 
1 accounted for 35% of genetic variation, with Hereford animals at 
the negative end and Angus individuals at the other end. 
Eigenvector 2 accounted for differences in Bos taurus vs Bos indicus 
ancestry and explained 25% of the variance (Supplementary Fig. 3
in Supplementary File 1). The remaining principal components 
explained much less variation (Supplementary Fig. 4 in 
Supplementary File 1), and therefore we chose to include eigen-
vectors for only the first 2 principal components as covariates in 
the model evaluating the effect of explicitly accounting for breed 
structure. A likelihood ratio test comparing the models with 
and without principal components fit as fixed effects indicated 
that inclusion provided a moderately better fit (-log10(P-value) =  
3.04). However, this model required the exclusion of phenotypes 
from un-genotyped animals. Further, including principal compo-
nents resulted in lower accLR for hair shedding across 10 iterations 
(mean accLR = 0.62 with principal components vs mean accLR = 0.68 
without principal components). Therefore, we chose to consider 
results from the “full” model excluding principal components 
and including all available individuals for downstream analyses.

Across the full and breed-specific datasets, narrow-sense herit-
ability (h2) and repeatability (r) were similar to parameters reported 
for American Angus cattle by our research (Durbin et al. 2020) and by 
Gray et al. (2011) (Table 2). Estimated h2 ranged from 0.32 (Hereford) 
to 0.41 (IGS) and estimated r ranged from 0.40 (Brangus, Hereford) to 
0.48 (IGS). The additive genetic variance (σ2

A) estimate in the full da-
taset fell within the range of estimates of σ2

A in the breed-specific da-
tasets, suggesting that this value was not inflated by the inclusion of 
crossbred animals. The permanent environmental variance (σ2

PE) ac-
counted for 5–7% of total variance with the exception of the Brangus 
dataset, for which σ2

PE was essentially zero. The International 
Brangus Breeders Association did not begin participating in the pro-
ject until 2018, and so 96% of Brangus animals had only 1 or 2 years 
of data. This likely explains why no permanent environmental ef-
fect was estimated in the Brangus dataset.

In the full dataset, the median EBV was −0.02, ranging from 
−2.32 to 1.92. Though variation in EBVs largely overlapped be-
tween breeds, breeds recently selected for performance in the 
“show ring” where fuller hair coats are desirable (Shorthorn and 
Maine-Anjou) tended to have higher (i.e. less desirable) EBVs 
(Supplementary Fig. 5 in Supplementary File 1). Further, breeds 
with known Bos indicus ancestry (Brangus and Charolais; (Decker 
et al. 2014)) tended to have lower EBVs.

Estimated accLR ranged from 0.657 to 0.674 across 10 iterations 
using all available data. Among the breed-specific datasets, accLR 

tended to be lowest in the Hereford dataset and highest in the 
IGS dataset (Supplementary Table 1 in Supplementary File 1). 
The mean bv

w, P was between 1.00 and 1.04 in all datasets, suggest-
ing minimal dispersion.
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The effects of temperature and photoperiod
Mean hours of sunlight per day ranged from 10.89 to 15.41 hours, 
averaging 13.88 hours with a standard deviation of 0.74 
(Supplementary Fig. 6a in Supplementary File 1). The mean ap-
parent high temperature ranged from 4.23 to 39.33°C with a 
mean of 25.87 and standard deviation of 5.37 (Supplementary 
Fig. 6b in Supplementary File 1). The base model including ap-
parent temperature and day length provided a better fit over 
both the model with only apparent temperature (-log10(P-value)  
= 92.35) or day length (–log10(P-value) = 156.52), while the model 
including the interaction effect provided a better fit than the 
base model (–log10(P-value) = 3.42). The interaction model also 
had a lower AIC value than the base model and both of the re-
duced models (Table 3). The day length BLUE from this ex-
panded model suggested that, on average, hair shedding score 
decreases by 0.45 units for each hour increase in the mean hours 
of sunlight in the 30 d before scoring hair shedding. Further, hair 

shedding score was predicted to decrease by 0.07 units with 
every 1°C increase in the mean apparent high temperature for 
the 30 d before scoring.

Calving season, toxic fescue grazing status, and age group 
BLUEs from all 4 models are in Supplementary Table 2 in 
Supplementary File 1. In general, BLUEs for grazing toxic fescue 
tended to be higher than BLUEs for not grazing toxic fescue and 
BLUEs for spring calving tended to be higher than BLUEs for fall 
calving, congruent with trends we previously reported (Durbin 
et al. 2020). The magnitude of the effect of grazing toxic fescue 
was estimated to be ∼ 4 times larger in the day length-only model 
than in the temperature-only model, and ∼ 2 times larger than in 
the models including both day length and temperature.

Recommendations for genetic evaluations
Based on a series of likelihood ratio tests and AIC comparisons, 
the base model including temperature and day length without 
an interaction effect provided the best fit to the data. However, 
the direction of the signs changed from negative to positive for 
all temperature and day-length BLUEs relative to the models 
without a contemporary group effect. Besides being incongru-
ent with biological expectation, this is likely a sign of collinear-
ity and suggests that including temperature or day length is 
redundant when contemporary groups are properly con-
structed. The combination of score group and farm ID captures 
these environmental conditions, and therefore we recommend 
that producers hair shedding score their entire herd on the 
same day in adequately sized score groups as are represented 
in our analyzed data.

Crossbred or other: 14,986

Angus: 10,222

Hereford: 2,993

Red Angus: 2,316

Simmental: 2,288

Brangus: 1,918

Gelbvieh: 748

Charolais: 676

Shorthorn: 489

Maine-Anjou: 263

Fig. 1. Counts of hair shedding score records by reported breed. Most phenotypes came from 3 breeds and were recorded in the Midwest or South. For the 
purposes of this map, Angus, Hereford, Red Angus, Simmental, and Gelbvieh animals with at least ⅝ ancestry assigned to the given breed based on pedigree 
estimates were included in that breed. Animals with unknown ancestry, less than ⅝ ancestry assigned to 1 breed, or of a breed not listed above were called 
“Crossbred or other”. Map was plotted using public domain data from the US Department of Commerce, Census Bureau via the R package maps (https://cran. 
r-project.org/web/packages/maps/).

Table 2. Additive genetic, permanent environmental, and residual 
variance estimates as well as narrow-sense heritability and 
repeatability within the full dataset and each of the 4 
breed-specific datasets. Approximated standard errors for 
heritability and repeatability estimates are in parentheses.

Dataset σ2
A σ2

PE σ2
E h2 r

Angus 0.358 0.052 0.557 0.370 (0.022) 0.424 (0.014)
Brangus 0.267 0.000 0.403 0.400 (0.031) 0.400 (0.031)
Hereford 0.215 0.054 0.400 0.321 (0.044) 0.402 (0.024)
IGS 0.390 0.070 0.500 0.407 (0.020) 0.480 (0.012)
Full dataset 0.331 0.072 0.500 0.368 (0.012) 0.448 (0.008)
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Genome-wide association
In the main effects GWAA using DEBVs, 377 variants were 
genome-wide significant at FDR = 5% (Fig. 2a). Of the 413 variants 
passing a FDR = 5% level in the meta-analysis of year-specific 
main effects GWAA, 20 were selected by COJO, plus an additional 
37 variants with FDR < 5% (Fig. 2b). The 57 SNPs selected by COJO 
resided in 30 independent associations, with independent associa-
tions delimited by pairs of adjacent SNPs greater than 1 Mb apart 
as in (Yang et al. 2012).

Over half of all significant SNPs were found on chromosome 5 
as in (Durbin et al. 2020) (Fig. 3a). COJO selection suggests that 
these results might represent 3 separate causal loci. The lead 
SNP in both main effects GWAA (BTA5:18,767,155) was also the 
most significant SNP identified in COJO selection. The nearest 
gene to this variant is a lncRNA approximately 300 kb down-
stream (ENSEMBL ID ENSBTAG00000053947), followed by KITLG 
approximately 400 kb upstream.

Gene set enrichment results were largely consistent between 
the 2 main effects GWAA strategies, both returning terms asso-
ciated with regulation of apoptosis (Supplementary Table 3 in 
Supplementary File 1). QTL enrichment analysis of the main ef-
fects results returned 6 significant terms (Supplementary 
Table 2 in Supplementary File 1). Of these, “white spotting” was 

the most significantly enriched QTL term (P-value = 1.15 × 10−16). 
Upon further examination, this signal appeared to be driven by 
SNPs within and near the MITF (microphthalmia-associated transcrip-
tion factor) gene on chromosome 22, a master regulator of melano-
cyte production that is highly conserved across vertebrates 
(Steingrímsson et al. 2004; Levy et al. 2006; Hou and Pavan 2008).

Meta-analysis of mean apparent high temperature and mean 
day-length GxE interaction effect GWAA resulted in 17 and 1,040 
variants passing at FDR = 5%, respectively (Fig. 4). Unlike main ef-
fect gene set enrichment results, most terms enriched in the ana-
lysis of day length GxE interaction results were associated with 
keratinization and cytoskeleton formation (Supplementary 
Table 3 in Supplementary File 1).

Genes within 50 kbp of associated SNPs for all GWAA are re-
ported in Supplementary File 2.

Discussion
In cattle, hair shedding is affected by nutrition and metabolism, 
temperature, and seasonal changes in the amount of daylight.

Calving season, toxic fescue grazing status, and age group BLUEs 
shed light on the relationship between seasonal hair shedding and 
nutrition/management effects. For example, younger cows have 

Table 3. BLUEs and AIC values from 4 increasingly complex models quantifying the effects of day length and temperature on hair 
shedding.

Model Day length BLUE Temperature 
BLUE

Day length*temperature 
BLUE

AIC

Day length + covariates −0.830 (0.008) - - 94972.420
Temperature + covariates - −0.121 (0.001) - 94380.790
Day length + temperature + covariates (base model) −0.394 (0.013) −0.074 (0.002) - 93537.380
Day length + temperature + day length*temperature +  

covariates
−0.446 (0.016) −0.072 (0.002) −0.006 (0.001) 93509.710

Fig. 2. Manhattan plot of main effect -log10(q-values) a) using DEBVs and b) using meta-analysis. The lower (blue) lines at 1.3 represent FDR = 5% and the upper 
(red) lines at 2 represent FDR = 1%. Black points represent variants identified by COJO selection. Please see Supplementary File 2, which lists genes within 50 kbp 
of the associated SNPs.
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higher nutritional requirements and shed off later in the spring. 
Surprisingly, BLUEs for the oldest age group (cows aged 10 and up) 
were considerably more negative than BLUEs for mature cows 
(aged 4–9). In other mammals, patterns of seasonal coat shedding 

are typically “U-shaped” with age, with senescing animals in the 
last stage of their life typically shedding later than their younger 
counterparts (i.e. (Déry et al. 2019)). Since beef cows are typically 
culled from the herd or die between ages 11 and 12 (Azzam et al. 
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1990), it's likely that the advantage predicted here for very old cows is 
reflective of selection (i.e. culling) allowing well-adapted individuals 
to remain productive later into their lives.

The estimated effect of grazing toxic fescue was largest in the 
day length only model. This could reflect the relationship between 
temperature and tall fescue ergot alkaloid levels (see Klotz 2015) 
and the references therein), as major symptoms of fescue toxico-
sis is vasoconstriction increasing heat stress and decreased feed 
intake. Fescue toxins are also known to decrease serum prolactin 
(Klotz 2015), thus highlighting the relationship between fescue 
toxins, prolactin, and hair shedding. Selection for more rapid 
hair shedding may not only increase heat tolerance, but may 
also identify cattle more resilient to fescue toxicosis.

The length of daylight hours has a tremendous impact on hair 
shedding. The hormonal cascades underlying seasonal coat 
change, largely driven by prolactin, are highly conserved between 
species. In response to changes in day length, photoperiodic cues 
are forwarded from the eye to the pineal gland, which is respon-
sible for the production of melatonin. Melatonin inhibits prolac-
tin, and decreased melatonin production from increased 
daylight allows for elevated serum prolactin, thereby triggering 
the spring molt (Zimova et al. 2018). Temperature changes have 
also been implicated via interaction with day length (Gebbie 
et al. 1999; Zimova et al. 2014; Schmidt et al. 2017), though the me-
chanisms by which temperature influences seasonal biology (and 
by which mammals sense temperature in general) are unclear 
(Caro et al. 2013). The day length-temperature interaction has 
never been explicitly demonstrated in cattle, though Peters and 
Tucker (1978) showed the effect of photoperiod on serum prolac-
tin is magnified by ambient temperature. Results from the models 
here quantifying the effects of external environmental variables 
on hair shedding score clearly point to roles for day length and 
temperature in regulating seasonal coat change. However, GxE 
GWAA of the 2 variables suggests a larger independent role for 
day length than temperature. Even though the 2 GxE GWAA had 
the exact same sample sizes, we observed substantially more as-
sociations in the daylength GxE GWAA. The lack of temperature 

GxE GWAA results found here is consistent with previous work 
demonstrating the inability of temperature alone to initiate sea-
sonal coat change (Zimova et al. 2018). Our results show that in 
cattle, there is little to no genetic variation for temperature sens-
ing. However, there appears to be a large number of genetic inter-
actions with day length that are associated with hair shedding 
variation.

Using 2 very different GWAA approaches (DEBVs as pseudo- 
phenotypes and meta-analysis of year-specific GWAA), we found 
nearly identical results (Fig. 2; Supplementary Table 3 and 
Supplementary Table 4 in Supplementary File 1). In both main ef-
fects GWAA, over half of all significant variants were located on 
chromosome 5 (Fig. 2). We previously (Durbin et al. 2020) found a 
similarly large association on chromosome 5 in American Angus 
cattle but were unable to narrow down candidate genes. We pre-
viously theorized that the strength of the association, likely 
caused by extensive long-range LD, could contain multiple causal 
mutations affecting multiple genes (Cannon and Mohlke 2018). 
Using COJO selection, we find evidence for 3 separate associations 
between 14 and 24 Mb on chromosome 5 (Fig. 3a). The third asso-
ciation contains the lead COJO SNP and the lead SNP in both main 
effects GWAA, located at BTA5:18,767,155. The closest genes to 
this SNP are an unannotated lncRNA and KITLG, ∼300 kb down-
stream and ∼400 kb upstream, respectively. The gene CEP290 is 
between the 2nd and 3rd COJO peaks, and its action is involved 
in the biogenesis of the photoreceptor sensory cilia (Rachel et al. 
2012). Finally, NTS (neurotensin) is located at 15.5 Mb on chromo-
some 5; NTS is known to affect prolactin levels (McCann et al. 
1982). This connection to prolactin is interesting, based on the ef-
fect of prolactin on seasonal turnover of the haircoat.

The second largest association in the main effects GWAA was 
located on BTA23 in proximity to PRL (BTA23:35,332,705– 
35,341,607; Fig. 3b), the gene encoding prolactin. As previously 
mentioned, prolactin is the main hormonal regulator of seasonal 
response, making it an obvious candidate gene. Further, muta-
tions in PRL and its receptor were previously linked to an abnormal 
hair coat and thermoregulatory phenotype (Littlejohn et al. 2014). 

Fig. 4. Manhattan plots of a) mean apparent temperature and b) mean day length interaction effect meta-analysis –log10(q-values). Lower (blue) lines at 1.3 
represent FDR = 5% and upper (red) lines at 2 represent FDR = 1%. Please see Supplementary File 2, which lists genes within 50 kbp of the associated SNPs.
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However, this association also contained CDKAL1 (CDK5 regulatory 
subunit associated protein 1 like 1; BTA23:36,745,642–37,444,814), 
with many significant variants (including 5 COJO selected SNPs) 
within the gene itself (Fig. 3b). In multiple human populations, 
CDKAL1 variants are associated with risk for type 2 diabetes melli-
tus and decreased insulin secretion (Steinthorsdottir et al. 2007). 
These results could point toward a relationship between metabolic 
regulation and seasonal hair shedding in cattle. In support of this 
idea, mature body weight and 18-month body weight QTL associa-
tions were enriched in the main effects results (Supplementary 
Table 4 in Supplementary File 1). Further, genes associated with 
“metabolism” (Supplementary Table 3 in Supplementary File 1) 
and QTL associated with “metabolic body weight” and “ketosis” 
(Supplementary Table 4 in Supplementary File 1) were enriched 
in the day length GxE GWAA results. Photoperiodic response is as-
sociated with patterns of seasonal growth and metabolic change 
across taxa in addition to coat change. When resources are more 
seasonally dependent, seasonal growth and nutrient partitioning 
is more extreme with higher adiposity during days with few hours 
of sunlight. Domestic animals are less dependent upon seasonal 
resources, but there is still evidence that growth, nutrient parti-
tioning, and milk production respond to changing day length in 
livestock species (Petitclerc et al. 1983; Tucker et al. 1984; 
Barenton et al. 1988; Dahl et al. 2000; Small et al. 2003).

The hair follicle cycle is composed of 3 main phases highly con-
served across mammalian species (Stenn and Paus 2001): anagen, 
catagen, and telogen. During catagen, the hair follicle involutes 
via apoptosis (Botchkareva et al. 2006), or the process by which 
cells are eliminated after fulfilling a biological purpose. Our 
gene set enrichment analyses of the main effects GWAA results 
returned multiple terms associated with regulation of apoptosis. 
Additionally, terms associated with keratin formation were en-
riched in the day length GxE gene set enrichment analysis. In a 
transcriptomic study of mountain hare seasonal coat color, 
Ferreira et al. (2020) found similar enrichment of cell death terms 
and keratinization. This might suggest shared mechanisms be-
tween multiple forms of seasonal coat change.

QTL associated with “white spotting” were significantly enriched 
in the main effects results, driven by SNPs near and within MITF on 
BTA22. An association with KITLG, which is responsible for white 
and roan coats in Shorthorn cattle, is also tagged by SNPs associated 
with hair shedding. There are multiple potential explanations for 
this result, including confounding due to population structure, dif-
ferences in hair color affecting hair shedding, effects on eye func-
tion, and crosstalk between melanocytes and neighboring cells.

Confounding due to population structure is unlikely. First, our 
P-values are well-calibrated. Second, none of the other genes with 
large frequency differences across breeds such as other coat color 
genes, the locus controlling horned vs polled, or other large effect 
genes related to breed differences are associated with hair shedding. 
Finally, the evaluation of EBVs shows that dispersion is not different 
from one and bias is not different from zero. Dispersion and bias are 
not well calibrated when breed effects unduly influence the predic-
tions. Thus, we reject the interpretation that this result is due to 
confounding from population structure and breed effects.

We do not find strong evidence to support the conclusion that 
variation in coat color, including the amount of white on an animal, 
influences differences in hair shedding through heat absorption or 
other mechanisms. Most of the other genes related to cattle coat 
color differences, such as MC1R, ASIP, TYRP1, TYR, PMEL, and KIT 
(Schmutz 2012) are not associated with hair shedding variation. 
Further, we find the chromosome 5 association in Angus cattle 
(Durbin et al. 2020), which are predominately solid black cattle.

The effects of MITF and KITLG on retinal function cannot be ru-
led out. Perturbations to MITF are responsible for several audio- 
visual disorders across taxa, including Waardenburg syndrome 
(Tassabehji et al. 1994) and Tietzs syndrome (Amiel et al. 1998) in 
humans. Of particular interest, MITF is also essential for regulating 
the production of retinal pigment epithelial cells, which support 
the parts of the eye responsible for light sensing and color vision 
(Wen et al. 2016; García-Llorca et al. 2019; Han et al. 2020). In cattle 
and other mammals, light stimulation in the eye activates the pin-
eal gland, which is the main regulator of photoperiodic responses 
including coat molting (Reiter 1991). KITLG has a multitude of roles 
across tissues, including in the retina. Recently, KITLG was shown 
to protect against retinal degenerative diseases by preventing 
photoreceptor death in a mouse model (Li et al. 2020).

The explanation we find most intriguing is the crosstalk between 
melanocytes and nearby cells, including keratinocytes. Not only do 
we find associations with MITF and KITLG, we find multiple genes 
related to melanocyte and melanogenesis gene pathways, includ-
ing SOX9, PBX1, PBX2, EDN3, FZD9, NOTCH2, CREB3L2, and GNAS 
[(Baxter et al. 2010; D’Mello et al. 2016; Kanehisa et al. 2023) KEGG 
pathways hsa04916 and map04916] associated with variation in 
hair shedding. Further, various genes from the same families as 
melanogenesis genes, such as SOX4, SOX21, NOTCH4, TRPM2, 
RAB22A, GRP84, GRP179, GRP89A, and 12 genes from the solute car-
rier family are identified in our results. Crosstalk between melano-
cyte stem cells and hair follicle stem cells is believed to occur via 
TGFβ and WNT signaling (Mort et al. 2015), but we only find 4 genes 
within these pathways in our results (DCN, DKK4, LRP6, APCDD1L). 
Although we find genes related to melanogenesis, we do not find 
many of the genes typically included in hair follicle gene networks, 
such as those in BMP (bone morphogenetic protein), FGF (fibroblast 
growth factors), and WNT (Wingless and Int-1) signaling pathways 
(Daszczuk et al. 2020). However, SOX9, SOX21, GNAS, BCL2, TSPEAR, 
KRT74, and TFAP2C, which have gene ontology annotations of “hair 
cycle” (GO:0042633), are identified in our analyses (Ashburner et al. 
2000; The Gene Ontology Consortium 2023). Thus, based on a data-
base and literature search of gene networks of melanogenesis and 
hair follicles, it appears to us that melanocytes affect hair molting, 
and there may not be a direct relationship between hair shedding 
and hair color.

In the future, imputation of genotypes to sequence level would 
enable fine-mapping of significantly associated regions and their 
functional annotations. At the genotype density used here, 
causal variants are unlikely to have been directly assayed. 
Sequence-level data in combination with our multibreed dataset 
could enable the refinement of causal variants to near the base- 
pair level.

Data collected and maintained by nonprofessionals are often 
under-utilized, as it can introduce certain errors and biases. 
However, it can afford researchers an increased analytical power 
via vastly increased sample size when statistically modeled cor-
rectly. In a similar effort, Nowak et al. (2020) quantified the effects 
of temperature and day length on molting in mountain goats using 
data and photographs collected by nonprofessionals. Similarly, we 
were able to explore the functional biology of a complex trait using 
farmer-sourced data (Decker 2015). This work reinforces the utility 
of “citizen-science” data collected by nonprofessionals as a power-
ful tool for studying complex trait biology.

Conclusions
We confirm once again that hair shedding is moderately heritable 
with consistent estimates of heritability and repeatability between 
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datasets. Using a crossbred and multibreed dataset, we were able to 
show that a previously published association found on chromo-
some 5 in American Angus cattle is likely driven by multiple causal 
variants at this locus. Together, these results point toward import-
ant roles of daylight sensing and temperature in regulating bovine 
seasonal hair coat shedding and provide compelling candidate re-
gions for functional analyses. Particularly, there appears to be a 
clear relationship between variation in hair shedding and sensing 
day length. Our results also point to crosstalk between melanocytes 
and keratinocytes affecting molting. Despite a vast body of research 
exploring the biological mechanisms regulating seasonal molting 
across the tree of life, to our knowledge there have been no previous 
studies of how genetic loci contribute to individual variation in sea-
sonal molting. Additionally, the photoperiodic and light-sensing 
mechanisms regulating most seasonal phenotypes, including coat 
shedding, are largely shared across species (see Helm et al. (2013)
and references therein). Therefore, this work also provides an im-
portant stepping-off point for research in other species.

Data availability
Genotype, phenotype, and metadata are available from the Dryad 
Digital Repository (https://doi.org/10.5061/dryad.ngf1vhhz4).
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